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THE BERTINI INVOLUTION

ALEX DEGTYAREV

Abstract. We summarize and extend E. Moody’s results on the explicit equa-
tions related to the Bertini involution.

These notes are the result of my attempt to understand E. Moody’s paper [1]. I
correct a few misprints in [1] and take the computation a bit further.

I express my admiration to Ethel I. Moody, who managed to perform this tedious
computation in the pre-Maple era. A Maple implementation of most equations is
found at http://www.fen.bilkent.edu.tr/~degt/papers/Bertini.zip.

This text is not intended as an ‘official’ publication; it is distributed in the hope
that it may be useful. It can be cited by its arXiv location.

Whenever possible, I try to keep the original notation of [1].

1. The Bertini involution

1.1. The results of [1]. Consider the pencil of cubics

(1.1) λw(x) + µw′(x) = 0,

where

w(x) = x23(a1x1 + a2x2) + x3(b1x
2

1 + b2x1x2 + b3x
2

2) + (c1x
2

1x2 + c2x1x
2

2)

and similar for w′, so that the coordinate vertices are amongst the basepoints of
the pencil. The point (0 : 0 : 1) will play a special rôle.

The curve of the pencil passing through a point y is given by

(1.2) W3(x) := w(x)w′(y)− w′(x)w(y) = 0.

Clearly,

W3(x) = x23(A1x1 +A2x2) + x3(B1x
2

1 +B2x1x2 +B3x
2

2) + (C1x
2

1x2 + C2x1x
2

2),

where Ai(y) := aiw
′(y)− a′iw(y) and similar for Bi, Ci.

The tangent to (1.2) at (0 : 0 : 1) meets the curve again at r = (r1 : r2 : r3),
where

(1.3)
r1 = A2r

′

1, r2 = −A1r
′

1, r3 = A1A2r
′

3,

r′1 := B1A
2

2 −B2A1A2 +B3A
2

1, r′3 := A2C1 −A1C2.

The locus of these points is

(1.4) γ4(y) := y1A1 + y2A2 = 0.

2000 Mathematics Subject Classification. 14E07.
Key words and phrases. Bertini involution, Geiser involution.
These notes are to be extended should there be any interesting development. They will be

available at http://www.fen.bilkent.edu.tr/~degt/papers/papers.htm and on the arXiv.

1

http://arxiv.org/abs/1212.0991v1
http://www.fen.bilkent.edu.tr/~degt/papers/Bertini.zip
http://www.fen.bilkent.edu.tr/~degt/papers/papers.htm


2 ALEX DEGTYAREV

Apart from the basepoints, the locus (1.4) meets (1.2) at a single point r. The line
(ry) meets (1.2) at a third point z, and the Bertini involution can be defined as
the map y 7→ z. Let κ := a1b

′

1 − a′1b1 and

C5(y) := A2[B1 + κy1y
2

3 ]y2
+ [A1 − κy21y3]y2

[A2y3 +B3y2]y1
+ κB3y1y3,

φ6(y) := A1C2 + y3C5(y),

ψ6(y) := A2C1 + y3C5(y).

(Following [1], we use [e]u do indicate that e has a common factor u and this factor
has been removed.) In these notations, the Bertini involution is

(1.5) z1 = φ6[A
2

2φ6 +B3r
′

1]y1
, z2 = ψ6[A

2

1ψ6 +B1r
′

1]y2
, z3 = ψ6φ6C5.

Apart from the basepoint (0 : 0 : 1) of the pencil, the fixed point locus of this
involution is the curve

(1.6) K(y) := ψ6[A1y3 +B1y1]y2
− φ6[A2y3 +B3y2]y1

= 0.

Remark 1.7. The expressions for r, C5, and K found in [1] contain a number of
misprints. The corrections suggested are verified by the identities in §1.2 below, as
well as by (2.2) and (2.3).

1.2. Further observations. The expression for the Bertini involution, see (3.1),
is obtained by substituting z = lr +my and solving W3(lr +my) = 0, see (1.2),
in l : m. (This equation is linear since W3(r) = W3(y) = 0.) Note that {ψ6 = 0}
and {φ6 = 0} are the curves contracted to the basepoints (1 : 0 : 0) and (0 : 1 : 0),
respectively. Hence, they can also be found from the identities

y3r1 − y1r3 = A2γ4φ6, y2r3 − y3r2 = A1γ4ψ6.

Besides, one has
y1r2 − y2r1 = −r′1γ4.

A point y is fixed by (3.1) if and only if the tangent at y to the member (1.1) of
the pencil passing through y meets the curve again at r. In [1], the equation (1.6)
of the fixed point locus is obtained by eliminating λ : µ from (1.1) and the polar
conic to (1.1) with respect to r (after the substitution x 7→ y). Alternatively, K can
be found as the common factor of y3z1 − y1z3 and y2z3 − y3z2, using the identities

y3z1 − y1z3 = −φ6KA2, y2z3 − y3z2 = −ψ6KA1.

Note that the rightmost factors are just two particular members of the pencil.

2. The map P
2
99K Σ2

From now on, we assume that the distinguished basepoint (0 : 0 : 1) is simple.

2.1. The anti-bicanonical map. Let Y be the plane P2 blown up at all basepoints
(including infinitely near) of the pencil other than (0 : 0 : 1). It is a (nodal, in
general) Del Pezzo surface of degree 1, and the anti-bicanonical linear system maps
Y to a quadric cone in P

3. According to [1], the proper transforms of the sextics
{φ6 = 0} and {ψ6 = 0} are in |−2KY |. Hence, the space of sections H0(Y ;−2KY )
is generated by φ6 (or ψ6) and w

2, ww′, w′2, and the map y 7→ z̄ ∈ P
3 is given by

z̄0 = φ6(y), z̄1 = w2(y), z̄2 = w(y)w′(y), z̄3 = w′2(y).

Its image is the cone z̄1z̄3 = z̄22 . The passage to the affine coordinates x̄ := z̄1/z̄2,
ȳ := z̄0/z̄2 blows up the vertex and maps the cone to the Hirzebruch surface Σ2
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with the exceptional section E of self-intersection (−2) (the exceptional divisor over
the vertex). The composed rational map P

2
99K Σ2 is

(2.1) x̄ = w(y)/w′(y), ȳ = φ6(y)/w
′2(y).

Alternatively, Y with the remaining basepoint (0 : 0 : 1) blown up is a rational
Jacobian elliptic surface: the elliptic pencil is (1.1) and the distinguished section is
the exceptional divisor over (0 : 0 : 1). The Bertini involution becomes the fiberwise
multiplication by (−1), and the quotient blows down to the Hirzebruch surface Σ2.
The quotient map is generically two-to-one; its ramification locus is the union of
the exceptional section E ⊂ Σ2 and a certain proper trigonal curve, viz. the image
of {K = 0}. The pull-backs of the fibers of Σ2 are the anti-canonical curves in Y
(i.q. the members of the original pencil (1.1) of cubics), and the pull-backs of the
proper (i.e., disjoint from E) sections of Σ2 are the anti-bicanonical curves other
than those representable in the form {α1w

2 + α2ww
′ + α3w

′2 = 0}.

2.2. The ramification locus. Since {ψ6 = 0} is the pull-back of a section of Σ2,
there must be a relation (after the substitution x 7→ y) of the form

(2.2) ψ6 = φ6 + S2(w,w
′),

where S2 is a certain homogeneous polynomial of degree 2, see below.
The curve {φ6 = 0} is contracted by the Bertini involution. Hence, the pull-back

in Y of its image {ȳ = 0} splits into two components (sections of the elliptic pencil),
of which one is contracted by the blow down map Y → P

2. It follows that the free
term R2

3 in equation (2.3) below is indeed a perfect square.
Since {K = 0} is the pull-back of the ramification locus (other than E), which

is a proper trigonal curve, there must be a relation

(2.3) K2 = −4φ36 + φ26P2(w,w
′) + φ6Q4(w,w

′) +R2

3(w,w
′),

where P2, Q4, and R3 are certain homogeneous polynomials of degree 2, 4, and 3,

respectively. Let S2(t1, t2) =
∑2

i=0
sit

i
1t

2−i
2

etc. The coefficients pi, qi, ri, si are
found by a direct computation. They reduce to a remarkably simple form:

s0 = a2c1 − a1c2,

r0 = −a1b2c2 + a1b3c1 + a2b1c2,

q0 = 4(a1c2 − b1b3)s0 + 2b2r0,

p0 = b22 − 4a2c1 − 4b1b3 + 8a1c2

and

pi = (−1)i{p0}i, qi = (−1)i{q0}i, ri = (−1)i{r0}i, si = (−1)i{s0}i,

where { · }m is defined as follows: if e is a degree n monomial in a1, . . . , c2, then
{e}m is the sum of

(

n

m

)

monomials, each obtained from e by replacing m of its n
factors with their primed versions. (For example, one has {a1c2}1 = a1c

′

2 + a′1c2,
{b22}1 = 2b2b

′

2, and {a1b1c1}2 = a1b
′

1c
′

1 + a′1b1c
′

1 + a′1b
′

1c1.) This definition extends
to homogeneous polynomials by linearity.

Warning 2.4. The operation { · }m is used only to shorten the notation. As with
the derivative, this operation should be performed before any substitution of any
particular values of the coefficients (see, e.g., the substitution a1 = a2 = 0 in §3).
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Remark 2.5. Observe that S2(w,w
′) remains unchanged under the transformation

ai ↔ a′i, bi ↔ b′i, ci ↔ c′i, wi ↔ w′

i. The same holds for P2(w,w
′) and Q4(w,w

′),
whereas R3(w,w

′) changes sign.

Problem 2.6. The symmetry in Remark 2.5 is easily explained by interchanging w
and w′. However, is there a geometric explanation for the ‘regular’ behaviour of
the other coefficients?

Summarizing, we see that the map P
2
99K Σ2 given by (2.1) takes the sextics

{φ6 = 0} and {ψ6 = 0} to the sections {ȳ = 0} and {ȳ = −S2(x̄)}, respectively. The
map is generically two-to-one (the deck translation being the Bertini involution),
and its ramification locus in Σ2 is the union of E and the trigonal curve

−4ȳ3 + ȳ2P2(x̄) + ȳQ4(x̄) +R2

3(x̄) = 0.

As usual, we treat the homogeneous bivariate polynomials S2, P2, Q4, and R3 as

univariate ones via S2(x̄) := S2(x̄, 1) =
∑2

i=0
six̄

i etc.

Problem 2.7. Can one express coefficients si in terms of pi, qi, and ri? In other
words, does a choice of the ramification locus in Σ2 and one of the sections select
automatically the other section?

2.3. Other sextics contracted by the involution. The basepoint (0 : 0 : 1)
plays a special rôle in the definition of the Bertini involution. The other basepoints
are not special. In particular, any other basepoint (u1 : u2 : u3) gives rise to a
sextic {ψu

6 = 0} contracted to this point and to a splitting section of Σ2 whose
pull-back this sextic is. Assuming that u1 6= 0 and normalizing the coordinates as
(1, u2, u3), we have

(2.8) ψu
6 = φ6 + Su

2 (w,w
′),

where Su
2 is a homogeneous polynomial of degree 2 whose coefficients sui are

su0 = s0 + (a2c2u2 + (a2b2 − a1b3)u3) + a2b3u2u3 + a22u
2

3, sui = (−1)i{su0}i.

As above, the image of {ψu
6 = 0} in Σ2 is the section {ȳ = −Su

2 (x̄)}.
These equations are easily obtained by changing the coordinates and placing the

basepoint in question to (1 : 0 : 0).

3. The Geiser involution

Now, we assume that the pencil has exactly one basepoint infinitely near to the
distinguished point (0 : 0 : 1). In other words, all members of (1.1) have a common
tangent at (0 : 0 : 1) and, hence, exactly one of them has a double point at (0 : 0 : 1).
We can assume that this singular member is {w(x) = 0}, thus letting a1 = a2 = 0.
The resulting special case of the Bertini involution is the Geiser involution, see [1].

3.1. The involution. Most formulas in §1.1 simplify dramatically. One obviously
has A1 = −a′1w(y) and A2 = −a′2w(y); hence, γ4 = wγ1, see (1.4), where

(3.1) γ1 := −(a′1y1 + a′2y2)

is the defining polynomial of the common tangent to the members of the pencil at
the distinguished basepoint (0 : 0 : 1). (Here and below, w without an argument
stands for w(y).)

Next, there are splittings, see (1.3),

r′1 = w2r̃′1, r′3 = wr̃′3, ri = w3r̃i, i = 1, 2, 3,
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with
r̃1 = −a′2r̃

′

1, r̃2 = a′1r̃
′

1, r̃3 = a′1a
′

2r̃
′

3,

r̃′1 = a′22 B1 − a′1a
′

2B2 + a′21 B3, r̃′3 = a′1C2 − a′2C1.

Furthermore, one has

φ6 = wφ3, ψ6 = wψ3, C5 = wC̃,

where

C̃(y) := −a′2[B1 − a′1b1y1y
2

3]y2
+ a′1[a

′

2y3(w − b1y
2

1y3)−B3y2]y1y2
,

φ3(y) := −a′1C2 + y3C̃,

ψ3(y) := −a′2C1 + y3C̃.

Finally, after reducing the common factor w3 in (3.1), the Geiser involution takes
the form

z1 = φ3[a
′2

2 wφ3 +B3r̃
′

1]y1
, z2 = ψ3[a

′2

1 wψ3 +B1r̃
′

1]y2
, z3 = ψ3φ3C̃.

The loci contracted to the basepoints (1 : 0 : 0) and (0 : 1 : 0) are the cubics
{ψ6 = 0} and {φ6 = 0}, respectively, and the fixed point locus is the sextic

K̃(y) := ψ3[−a
′

1wy3 +B1y1]y2
− φ3[−a

′

2wy3 +B3y2]y1
= 0.

One has K = wK̃, see (1.6). The identities of §1.2 turn into

y3r̃1 − y1r̃3 = a′2γ1φ3, y2r̃3 − y3r̃2 = a′1γ1ψ3, y1r̃2 − y2r̃1 = −r̃′1γ1,

y3z1 − y1z3 = a′2φ3K̃, y2z3 − y3z2 = a′1ψ3K̃.

3.2. The double covering P
2
99K P

2. Let Z be the plane P
2 blown up at the

basepoints (including infinitely near) of the pencil other than (0 : 0 : 1) and the
infinitely near one. It is a (nodal, in general) Del Pezzo surface of degree 2, and
the anti-canonical linear system maps Z to P

2. This map is generically two-to-one,
its deck translation is the Geiser involution, and its ramification locus is a quartic
curve in P

2. The anti-canonical system is the web of cubics passing through the
seven points blown up; the space H0(Z;−KZ) is generated by any of φ3 or ψ3 and
by w and w′. Hence, the corresponding rational map P

2
99K P

2, y 7→ z̄, is given by

z̄0 = φ3(y), z̄1 = w(y), z̄2 = w′(y).

It is straightforward that q0 = r0 = s0 = 0. Hence, there are splittings

Q4(t, t
′) = tQ̃3(t, t

′), R3(t, t
′) = tR̃2(t, t

′), S2(t, t
′) = tS̃1(t, t

′)

and relations (2.2) and (2.3) turn into

ψ3 = φ3 + S̃1(w,w
′),

K̃2 = −4φ33w + φ23P2(w,w
′) + φ3Q̃3(w,w

′) + R̃2

2(w,w
′).

Thus, the ramification locus is the quartic

(3.2) 4z̄30 z̄1 = z̄20P2(z̄1, z̄2) + z̄0Q̃3(z̄1, z̄2) + R̃2

2(z̄1, z̄2).

In the coordinates chosen, the lines {z̄0 = 0} and {z̄0 + S̃1(z̄1, z̄2) = 0} are double
tangents (in the generalized sense) to this quartic.

Similarly, given another basepoint (1 : u2 : u3), one has Su
2 (t, t

′) = tS̃u
1 (t, t

′) and
the cubic {ψu

3 = 0} singular at this point is given by (cf. (2.8))

ψu
3 = φ3 + S̃u

1 (w,w
′).
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Remark 3.3. The coefficients of the polynomials S̃1, Q̃3, and R̃2 are the same as
those of S2, Q4, and R3, respectively, see §2.2, with an obvious shift by one. It is
worth emphasizing that the brace operation { · }i should be evaluated before the
substitution a1 = a2 = 0.

3.3. A few further observations. Unlike the general case considered in §2, now,
the fixed point locus {K̃ = 0} does pass through (0 : 0 : 1). In fact, since this curve

is the branch set, it follows that {K̃ = 0} is also the locus of the singular points of
the singular members of the web of cubics defined by the seven non-distinguished
basepoints. This curve has a double point at each of the seven basepoints. In
particular, it is an anti-bicanonical curve in Z.

Under the natural identification of the web and the dual plane (P2)̌ , the locus
of the singular members themselves is the curve dual to (3.2), including the lines
through the singular points of (3.2).

As another observation, note that {ψ3 = 0} and {φ3 = 0} are special members
of the web, viz. those singular at (1 : 0 : 0) and (0 : 1 : 0), respectively. As above,
these cubics are contracted by the involution to the corresponding basepoints.
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