THE BERTINI INVOLUTION

ALEX DEGTYAREV

Abstract

We summarize and extend E. Moody's results on the explicit equations related to the Bertini involution.

These notes are the result of my attempt to understand E. Moody's paper [1]. I correct a few misprints in [1] and take the computation a bit further.

I express my admiration to Ethel I. Moody, who managed to perform this tedious computation in the pre-Maple era. A Maple implementation of most equations is found at http://www.fen.bilkent.edu.tr/~degt/papers/Bertini.zip.

This text is not intended as an 'official' publication; it is distributed in the hope that it may be useful. It can be cited by its arXiv location.

Whenever possible, I try to keep the original notation of [1].

1. The Bertini involution

1.1. The results of $[1]$. Consider the pencil of cubics

$$
\begin{equation*}
\lambda w(x)+\mu w^{\prime}(x)=0 \tag{1.1}
\end{equation*}
$$

where

$$
w(x)=x_{3}^{2}\left(a_{1} x_{1}+a_{2} x_{2}\right)+x_{3}\left(b_{1} x_{1}^{2}+b_{2} x_{1} x_{2}+b_{3} x_{2}^{2}\right)+\left(c_{1} x_{1}^{2} x_{2}+c_{2} x_{1} x_{2}^{2}\right)
$$

and similar for w^{\prime}, so that the coordinate vertices are amongst the basepoints of the pencil. The point $(0: 0: 1)$ will play a special rôle.

The curve of the pencil passing through a point y is given by

$$
\begin{equation*}
W_{3}(x):=w(x) w^{\prime}(y)-w^{\prime}(x) w(y)=0 \tag{1.2}
\end{equation*}
$$

Clearly,

$$
W_{3}(x)=x_{3}^{2}\left(A_{1} x_{1}+A_{2} x_{2}\right)+x_{3}\left(B_{1} x_{1}^{2}+B_{2} x_{1} x_{2}+B_{3} x_{2}^{2}\right)+\left(C_{1} x_{1}^{2} x_{2}+C_{2} x_{1} x_{2}^{2}\right)
$$

where $A_{i}(y):=a_{i} w^{\prime}(y)-a_{i}^{\prime} w(y)$ and similar for B_{i}, C_{i}.
The tangent to (1.2) at $(0: 0: 1)$ meets the curve again at $r=\left(r_{1}: r_{2}: r_{3}\right)$, where

$$
\begin{gather*}
r_{1}=A_{2} r_{1}^{\prime}, \quad r_{2}=-A_{1} r_{1}^{\prime}, \quad r_{3}=A_{1} A_{2} r_{3}^{\prime}, \\
r_{1}^{\prime}:=B_{1} A_{2}^{2}-B_{2} A_{1} A_{2}+B_{3} A_{1}^{2}, \quad r_{3}^{\prime}:=A_{2} C_{1}-A_{1} C_{2} . \tag{1.3}
\end{gather*}
$$

The locus of these points is

$$
\begin{equation*}
\gamma_{4}(y):=y_{1} A_{1}+y_{2} A_{2}=0 . \tag{1.4}
\end{equation*}
$$

[^0]Apart from the basepoints, the locus (1.4) meets (1.2) at a single point r. The line (ry) meets (1.2) at a third point z, and the Bertini involution can be defined as the map $y \mapsto z$. Let $\kappa:=a_{1} b_{1}^{\prime}-a_{1}^{\prime} b_{1}$ and

$$
\begin{aligned}
C_{5}(y) & :=A_{2}\left[B_{1}+\kappa y_{1} y_{3}^{2}\right]_{y_{2}}+\left[A_{1}-\kappa y_{1}^{2} y_{3}\right]_{y_{2}}\left[A_{2} y_{3}+B_{3} y_{2}\right]_{y_{1}}+\kappa B_{3} y_{1} y_{3}, \\
\phi_{6}(y) & :=A_{1} C_{2}+y_{3} C_{5}(y), \\
\psi_{6}(y) & :=A_{2} C_{1}+y_{3} C_{5}(y) .
\end{aligned}
$$

(Following [1], we use $[e]_{u}$ do indicate that e has a common factor u and this factor has been removed.) In these notations, the Bertini involution is

$$
\begin{equation*}
z_{1}=\phi_{6}\left[A_{2}^{2} \phi_{6}+B_{3} r_{1}^{\prime}\right]_{y_{1}}, \quad z_{2}=\psi_{6}\left[A_{1}^{2} \psi_{6}+B_{1} r_{1}^{\prime}\right]_{y_{2}}, \quad z_{3}=\psi_{6} \phi_{6} C_{5} \tag{1.5}
\end{equation*}
$$

Apart from the basepoint $(0: 0: 1)$ of the pencil, the fixed point locus of this involution is the curve

$$
\begin{equation*}
K(y):=\psi_{6}\left[A_{1} y_{3}+B_{1} y_{1}\right]_{y_{2}}-\phi_{6}\left[A_{2} y_{3}+B_{3} y_{2}\right]_{y_{1}}=0 \tag{1.6}
\end{equation*}
$$

Remark 1.7. The expressions for r, C_{5}, and K found in [1] contain a number of misprints. The corrections suggested are verified by the identities in $\S 1.2$ below, as well as by (2.2) and (2.3).
1.2. Further observations. The expression for the Bertini involution, see (3.1), is obtained by substituting $z=l r+m y$ and solving $W_{3}(l r+m y)=0$, see (1.2), in $l: m$. (This equation is linear since $W_{3}(r)=W_{3}(y)=0$.) Note that $\left\{\psi_{6}=0\right\}$ and $\left\{\phi_{6}=0\right\}$ are the curves contracted to the basepoints $(1: 0: 0)$ and $(0: 1: 0)$, respectively. Hence, they can also be found from the identities

$$
y_{3} r_{1}-y_{1} r_{3}=A_{2} \gamma_{4} \phi_{6}, \quad y_{2} r_{3}-y_{3} r_{2}=A_{1} \gamma_{4} \psi_{6}
$$

Besides, one has

$$
y_{1} r_{2}-y_{2} r_{1}=-r_{1}^{\prime} \gamma_{4}
$$

A point y is fixed by (3.1) if and only if the tangent at y to the member (1.1) of the pencil passing through y meets the curve again at r. In [1], the equation (1.6) of the fixed point locus is obtained by eliminating $\lambda: \mu$ from (1.1) and the polar conic to (1.1) with respect to r (after the substitution $x \mapsto y$). Alternatively, K can be found as the common factor of $y_{3} z_{1}-y_{1} z_{3}$ and $y_{2} z_{3}-y_{3} z_{2}$, using the identities

$$
y_{3} z_{1}-y_{1} z_{3}=-\phi_{6} K A_{2}, \quad y_{2} z_{3}-y_{3} z_{2}=-\psi_{6} K A_{1}
$$

Note that the rightmost factors are just two particular members of the pencil.

$$
\text { 2. THE MAP } \mathbb{P}^{2} \rightarrow \Sigma_{2}
$$

From now on, we assume that the distinguished basepoint $(0: 0: 1)$ is simple.
2.1. The anti-bicanonical map. Let Y be the plane \mathbb{P}^{2} blown up at all basepoints (including infinitely near) of the pencil other than $(0: 0: 1)$. It is a (nodal, in general) Del Pezzo surface of degree 1, and the anti-bicanonical linear system maps Y to a quadric cone in \mathbb{P}^{3}. According to [1], the proper transforms of the sextics $\left\{\phi_{6}=0\right\}$ and $\left\{\psi_{6}=0\right\}$ are in $\left|-2 K_{Y}\right|$. Hence, the space of sections $H^{0}\left(Y ;-2 K_{Y}\right)$ is generated by ϕ_{6} (or ψ_{6}) and $w^{2}, w w^{\prime}, w^{2}$, and the map $y \mapsto \bar{z} \in \mathbb{P}^{3}$ is given by

$$
\bar{z}_{0}=\phi_{6}(y), \quad \bar{z}_{1}=w^{2}(y), \quad \bar{z}_{2}=w(y) w^{\prime}(y), \quad \bar{z}_{3}=w^{\prime 2}(y)
$$

Its image is the cone $\bar{z}_{1} \bar{z}_{3}=\bar{z}_{2}^{2}$. The passage to the affine coordinates $\bar{x}:=\bar{z}_{1} / \bar{z}_{2}$, $\bar{y}:=\bar{z}_{0} / \bar{z}_{2}$ blows up the vertex and maps the cone to the Hirzebruch surface Σ_{2}
with the exceptional section E of self-intersection (-2) (the exceptional divisor over the vertex). The composed rational map $\mathbb{P}^{2} \rightarrow \Sigma_{2}$ is

$$
\begin{equation*}
\bar{x}=w(y) / w^{\prime}(y), \quad \bar{y}=\phi_{6}(y) / w^{\prime 2}(y) \tag{2.1}
\end{equation*}
$$

Alternatively, Y with the remaining basepoint $(0: 0: 1)$ blown up is a rational Jacobian elliptic surface: the elliptic pencil is (1.1) and the distinguished section is the exceptional divisor over $(0: 0: 1)$. The Bertini involution becomes the fiberwise multiplication by (-1), and the quotient blows down to the Hirzebruch surface Σ_{2}. The quotient map is generically two-to-one; its ramification locus is the union of the exceptional section $E \subset \Sigma_{2}$ and a certain proper trigonal curve, viz. the image of $\{K=0\}$. The pull-backs of the fibers of Σ_{2} are the anti-canonical curves in Y (i.q. the members of the original pencil (1.1) of cubics), and the pull-backs of the proper (i.e., disjoint from E) sections of Σ_{2} are the anti-bicanonical curves other than those representable in the form $\left\{\alpha_{1} w^{2}+\alpha_{2} w w^{\prime}+\alpha_{3} w^{2}=0\right\}$.
2.2. The ramification locus. Since $\left\{\psi_{6}=0\right\}$ is the pull-back of a section of Σ_{2}, there must be a relation (after the substitution $x \mapsto y$) of the form

$$
\begin{equation*}
\psi_{6}=\phi_{6}+S_{2}\left(w, w^{\prime}\right) \tag{2.2}
\end{equation*}
$$

where S_{2} is a certain homogeneous polynomial of degree 2 , see below.
The curve $\left\{\phi_{6}=0\right\}$ is contracted by the Bertini involution. Hence, the pull-back in Y of its image $\{\bar{y}=0\}$ splits into two components (sections of the elliptic pencil), of which one is contracted by the blow down map $Y \rightarrow \mathbb{P}^{2}$. It follows that the free term R_{3}^{2} in equation (2.3) below is indeed a perfect square.

Since $\{K=0\}$ is the pull-back of the ramification locus (other than E), which is a proper trigonal curve, there must be a relation

$$
\begin{equation*}
K^{2}=-4 \phi_{6}^{3}+\phi_{6}^{2} P_{2}\left(w, w^{\prime}\right)+\phi_{6} Q_{4}\left(w, w^{\prime}\right)+R_{3}^{2}\left(w, w^{\prime}\right) \tag{2.3}
\end{equation*}
$$

where P_{2}, Q_{4}, and R_{3} are certain homogeneous polynomials of degree 2,4 , and 3 , respectively. Let $S_{2}\left(t_{1}, t_{2}\right)=\sum_{i=0}^{2} s_{i} t_{1}^{i} t_{2}^{2-i}$ etc. The coefficients $p_{i}, q_{i}, r_{i}, s_{i}$ are found by a direct computation. They reduce to a remarkably simple form:

$$
\begin{aligned}
& s_{0}=a_{2} c_{1}-a_{1} c_{2} \\
& r_{0}=-a_{1} b_{2} c_{2}+a_{1} b_{3} c_{1}+a_{2} b_{1} c_{2} \\
& q_{0}=4\left(a_{1} c_{2}-b_{1} b_{3}\right) s_{0}+2 b_{2} r_{0} \\
& p_{0}=b_{2}^{2}-4 a_{2} c_{1}-4 b_{1} b_{3}+8 a_{1} c_{2}
\end{aligned}
$$

and

$$
p_{i}=(-1)^{i}\left\{p_{0}\right\}_{i}, \quad q_{i}=(-1)^{i}\left\{q_{0}\right\}_{i}, \quad r_{i}=(-1)^{i}\left\{r_{0}\right\}_{i}, \quad s_{i}=(-1)^{i}\left\{s_{0}\right\}_{i},
$$

where $\{\cdot\}_{m}$ is defined as follows: if e is a degree n monomial in a_{1}, \ldots, c_{2}, then $\{e\}_{m}$ is the sum of $\binom{n}{m}$ monomials, each obtained from e by replacing m of its n factors with their primed versions. (For example, one has $\left\{a_{1} c_{2}\right\}_{1}=a_{1} c_{2}^{\prime}+a_{1}^{\prime} c_{2}$, $\left\{b_{2}^{2}\right\}_{1}=2 b_{2} b_{2}^{\prime}$, and $\left\{a_{1} b_{1} c_{1}\right\}_{2}=a_{1} b_{1}^{\prime} c_{1}^{\prime}+a_{1}^{\prime} b_{1} c_{1}^{\prime}+a_{1}^{\prime} b_{1}^{\prime} c_{1}$.) This definition extends to homogeneous polynomials by linearity.

Warning 2.4. The operation $\{\cdot\}_{m}$ is used only to shorten the notation. As with the derivative, this operation should be performed before any substitution of any particular values of the coefficients (see, e.g., the substitution $a_{1}=a_{2}=0$ in $\S 3$).

Remark 2.5. Observe that $S_{2}\left(w, w^{\prime}\right)$ remains unchanged under the transformation $a_{i} \leftrightarrow a_{i}^{\prime}, b_{i} \leftrightarrow b_{i}^{\prime}, c_{i} \leftrightarrow c_{i}^{\prime}, w_{i} \leftrightarrow w_{i}^{\prime}$. The same holds for $P_{2}\left(w, w^{\prime}\right)$ and $Q_{4}\left(w, w^{\prime}\right)$, whereas $R_{3}\left(w, w^{\prime}\right)$ changes sign.

Problem 2.6. The symmetry in Remark 2.5 is easily explained by interchanging w and w^{\prime}. However, is there a geometric explanation for the 'regular' behaviour of the other coefficients?

Summarizing, we see that the map $\mathbb{P}^{2} \rightarrow \Sigma_{2}$ given by (2.1) takes the sextics $\left\{\phi_{6}=0\right\}$ and $\left\{\psi_{6}=0\right\}$ to the sections $\{\bar{y}=0\}$ and $\left\{\bar{y}=-S_{2}(\bar{x})\right\}$, respectively. The map is generically two-to-one (the deck translation being the Bertini involution), and its ramification locus in Σ_{2} is the union of E and the trigonal curve

$$
-4 \bar{y}^{3}+\bar{y}^{2} P_{2}(\bar{x})+\bar{y} Q_{4}(\bar{x})+R_{3}^{2}(\bar{x})=0
$$

As usual, we treat the homogeneous bivariate polynomials S_{2}, P_{2}, Q_{4}, and R_{3} as univariate ones via $S_{2}(\bar{x}):=S_{2}(\bar{x}, 1)=\sum_{i=0}^{2} s_{i} \bar{x}^{i}$ etc.
Problem 2.7. Can one express coefficients s_{i} in terms of p_{i}, q_{i}, and r_{i} ? In other words, does a choice of the ramification locus in Σ_{2} and one of the sections select automatically the other section?
2.3. Other sextics contracted by the involution. The basepoint ($0: 0: 1$) plays a special rôle in the definition of the Bertini involution. The other basepoints are not special. In particular, any other basepoint $\left(u_{1}: u_{2}: u_{3}\right)$ gives rise to a sextic $\left\{\psi_{6}^{u}=0\right\}$ contracted to this point and to a splitting section of Σ_{2} whose pull-back this sextic is. Assuming that $u_{1} \neq 0$ and normalizing the coordinates as $\left(1, u_{2}, u_{3}\right)$, we have

$$
\begin{equation*}
\psi_{6}^{u}=\phi_{6}+S_{2}^{u}\left(w, w^{\prime}\right) \tag{2.8}
\end{equation*}
$$

where S_{2}^{u} is a homogeneous polynomial of degree 2 whose coefficients s_{i}^{u} are

$$
s_{0}^{u}=s_{0}+\left(a_{2} c_{2} u_{2}+\left(a_{2} b_{2}-a_{1} b_{3}\right) u_{3}\right)+a_{2} b_{3} u_{2} u_{3}+a_{2}^{2} u_{3}^{2}, \quad s_{i}^{u}=(-1)^{i}\left\{s_{0}^{u}\right\}_{i} .
$$

As above, the image of $\left\{\psi_{6}^{u}=0\right\}$ in Σ_{2} is the section $\left\{\bar{y}=-S_{2}^{u}(\bar{x})\right\}$.
These equations are easily obtained by changing the coordinates and placing the basepoint in question to $(1: 0: 0)$.

3. The Geiser involution

Now, we assume that the pencil has exactly one basepoint infinitely near to the distinguished point $(0: 0: 1)$. In other words, all members of (1.1) have a common tangent at $(0: 0: 1)$ and, hence, exactly one of them has a double point at $(0: 0: 1)$. We can assume that this singular member is $\{w(x)=0\}$, thus letting $a_{1}=a_{2}=0$. The resulting special case of the Bertini involution is the Geiser involution, see [1].
3.1. The involution. Most formulas in $\S 1.1$ simplify dramatically. One obviously has $A_{1}=-a_{1}^{\prime} w(y)$ and $A_{2}=-a_{2}^{\prime} w(y)$; hence, $\gamma_{4}=w \gamma_{1}$, see (1.4), where

$$
\begin{equation*}
\gamma_{1}:=-\left(a_{1}^{\prime} y_{1}+a_{2}^{\prime} y_{2}\right) \tag{3.1}
\end{equation*}
$$

is the defining polynomial of the common tangent to the members of the pencil at the distinguished basepoint $(0: 0: 1)$. (Here and below, w without an argument stands for $w(y)$.)

Next, there are splittings, see (1.3),

$$
r_{1}^{\prime}=w^{2} \tilde{r}_{1}^{\prime}, \quad r_{3}^{\prime}=w \tilde{r}_{3}^{\prime}, \quad r_{i}=w^{3} \tilde{r}_{i}, i=1,2,3,
$$

with

$$
\begin{gathered}
\tilde{r}_{1}=-a_{2}^{\prime} \tilde{r}_{1}^{\prime}, \quad \tilde{r}_{2}=a_{1}^{\prime} \tilde{r}_{1}^{\prime}, \quad \tilde{r}_{3}=a_{1}^{\prime} a_{2}^{\prime} \tilde{r}_{3}^{\prime}, \\
\tilde{r}_{1}^{\prime}=a_{2}^{\prime 2} B_{1}-a_{1}^{\prime} a_{2}^{\prime} B_{2}+a_{1}^{\prime 2} B_{3}, \quad \tilde{r}_{3}^{\prime}=a_{1}^{\prime} C_{2}-a_{2}^{\prime} C_{1}
\end{gathered}
$$

Furthermore, one has

$$
\phi_{6}=w \phi_{3}, \quad \psi_{6}=w \psi_{3}, \quad C_{5}=w \tilde{C}
$$

where

$$
\begin{aligned}
\tilde{C}(y) & :=-a_{2}^{\prime}\left[B_{1}-a_{1}^{\prime} b_{1} y_{1} y_{3}^{2}\right]_{y_{2}}+a_{1}^{\prime}\left[a_{2}^{\prime} y_{3}\left(w-b_{1} y_{1}^{2} y_{3}\right)-B_{3} y_{2}\right]_{y_{1} y_{2}} \\
\phi_{3}(y) & :=-a_{1}^{\prime} C_{2}+y_{3} \tilde{C} \\
\psi_{3}(y) & :=-a_{2}^{\prime} C_{1}+y_{3} \tilde{C}
\end{aligned}
$$

Finally, after reducing the common factor w^{3} in (3.1), the Geiser involution takes the form

$$
z_{1}=\phi_{3}\left[a_{2}^{\prime 2} w \phi_{3}+B_{3} \tilde{r}_{1}^{\prime}\right]_{y_{1}}, \quad z_{2}=\psi_{3}\left[a_{1}^{\prime 2} w \psi_{3}+B_{1} \tilde{r}_{1}^{\prime}\right]_{y_{2}}, \quad z_{3}=\psi_{3} \phi_{3} \tilde{C}
$$

The loci contracted to the basepoints $(1: 0: 0)$ and $(0: 1: 0)$ are the cubics $\left\{\psi_{6}=0\right\}$ and $\left\{\phi_{6}=0\right\}$, respectively, and the fixed point locus is the sextic

$$
\tilde{K}(y):=\psi_{3}\left[-a_{1}^{\prime} w y_{3}+B_{1} y_{1}\right]_{y_{2}}-\phi_{3}\left[-a_{2}^{\prime} w y_{3}+B_{3} y_{2}\right]_{y_{1}}=0
$$

One has $K=w \tilde{K}$, see (1.6). The identities of $\S 1.2$ turn into

$$
\begin{gathered}
y_{3} \tilde{r}_{1}-y_{1} \tilde{r}_{3}=a_{2}^{\prime} \gamma_{1} \phi_{3}, \quad y_{2} \tilde{r}_{3}-y_{3} \tilde{r}_{2}=a_{1}^{\prime} \gamma_{1} \psi_{3}, \quad y_{1} \tilde{r}_{2}-y_{2} \tilde{r}_{1}=-\tilde{r}_{1}^{\prime} \gamma_{1}, \\
y_{3} z_{1}-y_{1} z_{3}=a_{2}^{\prime} \phi_{3} \tilde{K}, \quad y_{2} z_{3}-y_{3} z_{2}=a_{1}^{\prime} \psi_{3} \tilde{K} .
\end{gathered}
$$

3.2. The double covering $\mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$. Let Z be the plane \mathbb{P}^{2} blown up at the basepoints (including infinitely near) of the pencil other than $(0: 0: 1)$ and the infinitely near one. It is a (nodal, in general) Del Pezzo surface of degree 2, and the anti-canonical linear system maps Z to \mathbb{P}^{2}. This map is generically two-to-one, its deck translation is the Geiser involution, and its ramification locus is a quartic curve in \mathbb{P}^{2}. The anti-canonical system is the web of cubics passing through the seven points blown up; the space $H^{0}\left(Z ;-K_{Z}\right)$ is generated by any of ϕ_{3} or ψ_{3} and by w and w^{\prime}. Hence, the corresponding rational map $\mathbb{P}^{2} \rightarrow \mathbb{P}^{2}, y \mapsto \bar{z}$, is given by

$$
\bar{z}_{0}=\phi_{3}(y), \quad \bar{z}_{1}=w(y), \quad \bar{z}_{2}=w^{\prime}(y)
$$

It is straightforward that $q_{0}=r_{0}=s_{0}=0$. Hence, there are splittings

$$
Q_{4}\left(t, t^{\prime}\right)=t \tilde{Q}_{3}\left(t, t^{\prime}\right), \quad R_{3}\left(t, t^{\prime}\right)=t \tilde{R}_{2}\left(t, t^{\prime}\right), \quad S_{2}\left(t, t^{\prime}\right)=t \tilde{S}_{1}\left(t, t^{\prime}\right)
$$

and relations (2.2) and (2.3) turn into

$$
\begin{gathered}
\psi_{3}=\phi_{3}+\tilde{S}_{1}\left(w, w^{\prime}\right) \\
\tilde{K}^{2}=-4 \phi_{3}^{3} w+\phi_{3}^{2} P_{2}\left(w, w^{\prime}\right)+\phi_{3} \tilde{Q}_{3}\left(w, w^{\prime}\right)+\tilde{R}_{2}^{2}\left(w, w^{\prime}\right)
\end{gathered}
$$

Thus, the ramification locus is the quartic

$$
\begin{equation*}
4 \bar{z}_{0}^{3} \bar{z}_{1}=\bar{z}_{0}^{2} P_{2}\left(\bar{z}_{1}, \bar{z}_{2}\right)+\bar{z}_{0} \tilde{Q}_{3}\left(\bar{z}_{1}, \bar{z}_{2}\right)+\tilde{R}_{2}^{2}\left(\bar{z}_{1}, \bar{z}_{2}\right) \tag{3.2}
\end{equation*}
$$

In the coordinates chosen, the lines $\left\{\bar{z}_{0}=0\right\}$ and $\left\{\bar{z}_{0}+\tilde{S}_{1}\left(\bar{z}_{1}, \bar{z}_{2}\right)=0\right\}$ are double tangents (in the generalized sense) to this quartic.

Similarly, given another basepoint ($1: u_{2}: u_{3}$), one has $S_{2}^{u}\left(t, t^{\prime}\right)=t \tilde{S}_{1}^{u}\left(t, t^{\prime}\right)$ and the cubic $\left\{\psi_{3}^{u}=0\right\}$ singular at this point is given by (cf. (2.8))

$$
\psi_{3}^{u}=\phi_{3}+\tilde{S}_{1}^{u}\left(w, w^{\prime}\right)
$$

Remark 3.3. The coefficients of the polynomials $\tilde{S}_{1}, \tilde{Q}_{3}$, and \tilde{R}_{2} are the same as those of S_{2}, Q_{4}, and R_{3}, respectively, see $\S 2.2$, with an obvious shift by one. It is worth emphasizing that the brace operation $\{\cdot\}_{i}$ should be evaluated before the substitution $a_{1}=a_{2}=0$.
3.3. A few further observations. Unlike the general case considered in $\S 2$, now, the fixed point locus $\{\tilde{K}=0\}$ does pass through $(0: 0: 1)$. In fact, since this curve is the branch set, it follows that $\{\tilde{K}=0\}$ is also the locus of the singular points of the singular members of the web of cubics defined by the seven non-distinguished basepoints. This curve has a double point at each of the seven basepoints. In particular, it is an anti-bicanonical curve in Z.

Under the natural identification of the web and the dual plane $\left(\mathbb{P}^{2}\right)^{r}$, the locus of the singular members themselves is the curve dual to (3.2), including the lines through the singular points of (3.2).

As another observation, note that $\left\{\psi_{3}=0\right\}$ and $\left\{\phi_{3}=0\right\}$ are special members of the web, viz. those singular at $(1: 0: 0)$ and $(0: 1: 0)$, respectively. As above, these cubics are contracted by the involution to the corresponding basepoints.

References

1. Ethel I. Moody, Notes on the Bertini involution, Bull. Amer. Math. Soc. 49 (1943), 433-436. MR 0008163 (4,253c)

Bilkent University, Department of Mathematics, 06800 Ankara, Turkey
E-mail address: degt@fen.bilkent.edu.tr

[^0]: 2000 Mathematics Subject Classification. 14E07.
 Key words and phrases. Bertini involution, Geiser involution.
 These notes are to be extended should there be any interesting development. They will be available at http://www.fen.bilkent.edu.tr/~degt/papers/papers.htm and on the arXiv.

